Volume 6, Issue 5, October 2017, Page: 66-72
A Novel Biosensor for Determination of Glucose Based on MWCNTs/ZrO2-Pt Nanocomposite
Mohamed Abdelfattah Ibrahim, Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia; Department of Chemistry, Faculty of Science, El-Arish University, El-Arish, North Sinai, Egypt
Meshari A. Al-Sharif, Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
Ali A. Keshk, Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
Received: Mar. 12, 2017;       Accepted: Apr. 8, 2017;       Published: Sep. 20, 2017
DOI: 10.11648/j.am.20170605.13      View  1975      Downloads  86
Abstract
Multiwalled carbon nanotubes/ZrO2-Pt(MWCNTs/ZrO2-Pt) composite was synthesized by a chemical route. The structure and composition of the MWCNTs/ZrO2-Pt composite were confirmed by means of transmission electron microscopy, and Raman spectroscopy. Due to the good electrochemical activity property of MWCNTs/ZrO2-Pt composite, a glucose biosensor was constructed by absorbing glucose oxidase (GOD) on the hybrid material. A direct electron transfer process is observed at the MWCNTs/ZrO2-Pt/GOD-modified glassy carbon electrode. The glucose biosensor has a linear range from 4.0 to 24.0 mM, which is suitable for glucose determination by real samples. It should be worthwhile noting that, from 4.0 to 12.0mM, the cathodic peak currents of the biosensor decrease linearly with increasing the glucose concentrations in human blood. Meanwhile, the resulting biosensor can also prevent the effects of interfering species. Moreover, the biosensor exhibits satisfying reproducibility, good operational stability and storage stability. Therefore, the MWCNTs/ZrO2-Pt /GOD biocomposite could be promisingly applied to determine blood sugar concentration in the practical clinical analysis.
Keywords
Multiwalled Carbon Nanotubes, Electrochemical Biosensors, Platinum Nanoparticles
To cite this article
Mohamed Abdelfattah Ibrahim, Meshari A. Al-Sharif, Ali A. Keshk, A Novel Biosensor for Determination of Glucose Based on MWCNTs/ZrO2-Pt Nanocomposite, Advances in Materials. Vol. 6, No. 5, 2017, pp. 66-72. doi: 10.11648/j.am.20170605.13
Copyright
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
Wen-Zhi Jia, Kang Wang, Xing-Hua Xia, Trends in Analytical Chemistry, Vol. 29, No. 4, 2010.
[2]
Manesh KM, Kim JH, Santhosh P, Gopalan AI, Lee KP, Kang HD, et al. J. of Nanosci /Nanotechnol 2007;7:3365–72.
[3]
Ragupathy D, Gopalan AI, Lee KP. J. of Electrochem Commun 2009; 11: 397–401.
[4]
Gopalan AI, Lee KP, Manesh KM, Santhosh P, Kim JH, Kang JS, et al. Talanta 2007;71:1774–81.
[5]
X. L. Ren, X. W. Meng, F. Q. Tang, J. Sens. Actuators B 110 (2005) 358.
[6]
X. L. Ren, X. W. Meng, D. Chen, F. Q. Tang, J. Jiao, J. Biosens. Bioelectron. 21 (2005) 433.
[7]
A. F. Wang, X. Y. Ye, P. G. He, Y. Z. Fang, J. Electroanalysis 15 (2007) 1603.
[8]
L. H. Zhu, L. H. Yang, X. L. Yang, C. Z. Li, J. Electroanalysis 6 (2007) 717.
[9]
Haipeng Yang, Yongfa Zhu, J. Biosens. Bioelectron 22 (2007) 2989.
[10]
J. Shen, L. Dudik, C. C. Liu, J. Sens. Actuators B 125 (2007) 106.
[11]
J. Wang, X. J. Zhang, L. Chen, J. Electroanalysis 16 (2000) 1277.
[12]
G. L. de Lara Gonzˇıalez, H. Kahlert, F. Scholz, J. Electrochim. Acta 52 (2007) 1968.
[13]
Q. L. Sheng, Y. Shen, H. F. Yang, J. B. Zheng, J. Electrochim. Acta 14 (2008) 4687.
[14]
S. M. Chen, C. Y. Liou, R. Thangamuthu, J. Electroanalysis 23 (2007) 2457.
[15]
M. H. Yang, J. H. Jiang, Y. S. Lu, Y. He, G. L. Shen, R. Q. Yu, J. Biomaterials 28 (2007) 3408.
[16]
Q. L. Sheng, Y. Shen, H. F. Zhang, J. B. Zheng, J. Electrochim. Acta 14 (2008) 4687.
[17]
Chen, G., Wang, Z., Xia, D., 2008. Chem. Mater. 20, 6951–6956.
[18]
Zhang, R., Wang, X., 2007. Chem. Mater. 19, 976–978.
[19]
Liu, Y., Wang, M., Zhao, F., Xu, Z., Dong, S., 2005. Biosens. Bioelectron. 21, 984–988.
[20]
Deng, C., Chen, J., Chen, X., Xiao, C., Nie, L., Yao, S., 2008. Biosens. Bioelectron. 23, 1272–1277.
[21]
Ansari, S. G., Ansari, Z. A., Wahab, R., Kim, Y.-S., Khang, G., Shin, H.-S., 2008. Biosens. Bioelectron. 23, 1838–1842.
[22]
Feng, J.-J., Xu, J.-J., Chen, H.-Y., 2006. Electrochem. Commun. 8, 77–82.
[23]
Li, Q., Luo, G., Feng, J., 2001a. Electroanalysis 13, 359–363.
[24]
Zhang, R., Wang, X., 2007. Chem. Mater. 19, 976–978.
[25]
Endo, H., Yonemori, Y., Hibi, K., Ren, H., Hayashi, T., Tsugawa, W., Sode, K., 2009. Biosens. Bioelectron. 24, 1417–1423.
[26]
Wang, Z., Liu, J., Liang, Q., Wang, Y., Luo, G., 2002. Analyst 127, 653–658.
[27]
Huang, C.-J., Chen, Y.-H., Wang, C.-H., Chou, T.-C., Lee, G.-B., 2007. Sensor. Actuat. B 122, 461–468.
[28]
Lee, S.-R., Sawada, K., Takao, H., Ishida, M., 2008. Biosens. Bioelectron. 24, 650–656.
[29]
Jiahui Lai, Yingchun Yi, Ping Zhu, Jing Shen, Kesen Wu, Lili Zhang, Jian Liu, Journal of Electroanalytical Chemistry, Volume 782, 1 December 2016, Pages 138–153.
Browse journals by subject